Versatile ion S5XL sequencer for targeted next generation sequencing of solid tumors in a clinical laboratory

نویسندگان

  • Meenakshi Mehrotra
  • Dzifa Yawa Duose
  • Rajesh R Singh
  • Bedia A Barkoh
  • Jawad Manekia
  • Michael A Harmon
  • Keyur P Patel
  • Mark J Routbort
  • L Jeffrey Medeiros
  • Ignacio I Wistuba
  • Rajyalakshmi Luthra
چکیده

BACKGROUND Next generation sequencing based tumor tissue genotyping involves complex workflow and a relatively longer turnaround time. Semiconductor based next generation platforms varied from low throughput Ion PGM to high throughput Ion Proton and Ion S5XL sequencer. In this study, we compared Ion PGM and Ion Proton, with a new Ion S5XL NGS system for workflow scalability, analytical sensitivity and specificity, turnaround time and sequencing performance in a clinical laboratory. METHODS Eighteen solid tumor samples positive for various mutations as detected previously by Ion PGM and Ion Proton were selected for study. Libraries were prepared using DNA (range10-40ng) from micro-dissected formalin-fixed, paraffin-embedded (FFPE) specimens using the Ion Ampliseq Library Kit 2.0 for comprehensive cancer (CCP), oncomine comprehensive cancer (OCP) and cancer hotspot panel v2 (CHPv2) panel as per manufacturer's instructions. The CHPv2 were sequenced using Ion PGM whereas CCP and OCP were sequenced using Ion Proton respectively. All the three libraries were further sequenced individually (S540) or multiplexed (S530) using Ion S5XL. For S5XL, Ion chef was used to automate template preparation, enrichment of ion spheres and chip loading. Data analysis was performed using Torrent Suite 4.6 software on board S5XL and Ion Reporter. A limit of detection and reproducibility studies was performed using serially diluted DLD1 cell line. RESULTS A total of 241 variant calls (235 single nucleotide variants and 6 indels) expected in the studied cohort were successfully detected by S5XL with 100% and 97% concordance with Ion PGM and Proton, respectively. Sequencing run time was reduced from 4.5 to 2.5 hours with output range of 3-5 GB (S530) and 8-9.3Gb (S540). Data analysis time for the Ion S5XL is faster 1 h (S520), 2.5 h (S530) and 5 h (S540) chip, respectively as compared to the Ion PGM (3.5-5 h) and Ion Proton (8h). A limit detection of 5% allelic frequency was established along with high inter-run reproducibility. CONCLUSION Ion S5XL system simplified workflow in a clinical laboratory, was feasible for running smaller and larger panels on the same instrument, had a shorter turnaround time, and showed good concordance for variant calls with similar sensitivity and reproducibility as the Ion PGM and Proton.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-Center Experience with a Targeted Next Generation Sequencing Assay for Assessment of Relevant Somatic Alterations in Solid Tumors

Companion diagnostics rely on genomic testing of molecular alterations to enable effective cancer treatment. Here we report the clinical application and validation of the Oncomine Focus Assay (OFA), an integrated, commercially available next-generation sequencing (NGS) assay for the rapid and simultaneous detection of single nucleotide variants, short insertions and deletions, copy number varia...

متن کامل

Pilot Study of a Next-Generation Sequencing-Based Targeted Anticancer Therapy in Refractory Solid Tumors at a Korean Institution.

We evaluated the preliminary efficacy and feasibility of a next-generation sequencing (NGS)-based targeted anticancer therapy in refractory solid tumors at a Korean institution. Thirty-six patients with advanced cancer underwent molecular profiling with NGS with the intent of clinical application of available matched targeted agents. Formalin-fixed paraffin-embedded (FFPE) tumors were sequenced...

متن کامل

Analysis of Pre-Analytic Factors Affecting the Success of Clinical Next-Generation Sequencing of Solid Organ Malignancies

Application of next-generation sequencing (NGS) technology to routine clinical practice has enabled characterization of personalized cancer genomes to identify patients likely to have a response to targeted therapy. The proper selection of tumor sample for downstream NGS based mutational analysis is critical to generate accurate results and to guide therapeutic intervention. However, multiple p...

متن کامل

Quality control material for the detection of somatic mutations in fixed clinical specimens by next-generation sequencing

BACKGROUND Targeted next generation sequencing (NGS) technology to assess the mutational status of multiple genes on formalin-fixed, paraffin embedded (FFPE) tumors is rapidly being adopted in clinical settings, where quality control (QC) practices are required. Establishing reliable FFPE QC materials for NGS can be challenging and/or expensive. Here, we established a reliable and cost-effectiv...

متن کامل

Targeted Next-Generation Sequencing at Copy-Number Breakpoints for Personalized Analysis of Rearranged Ends in Solid Tumors

BACKGROUND The concept of the utilization of rearranged ends for development of personalized biomarkers has attracted much attention owing to its clinical applicability. Although targeted next-generation sequencing (NGS) for recurrent rearrangements has been successful in hematologic malignancies, its application to solid tumors is problematic due to the paucity of recurrent translocations. How...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017